25 research outputs found

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    Faster approximation schemes and parameterized algorithms on (odd-)H-minor-free graphs

    Get PDF
    AbstractWe improve the running time of the general algorithmic technique known as Baker’s approach (1994) [1] on H-minor-free graphs from O(nf(|H|)) to O(f(|H|)nO(1)). The numerous applications include, e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements.On classes of odd-minor-free graphs, which have gained significant attention in recent time, we obtain a similar acceleration for a variant of the structural decomposition theorem proved by Demaine et al. (2010) [20]. We use these algorithms to derive faster 2-approximations; furthermore, we present the first PTASes and subexponential FPT-algorithms for independent set and vertex cover on these graph classes using a novel dynamic programming technique.We also introduce a technique to derive (nearly) subexponential parameterized algorithms on H-minor-free graphs. Our technique applies, in particular, to problems such as Steiner tree, (directed) subgraph with a property, (directed) longest path, and (connected/independent) dominating set, on some or all proper minor-closed graph classes. We obtain as a corollary that all problems with a minor-monotone subexponential kernel and amenable to our technique can be solved in subexponential FPT-time onH-minor free graphs. This results in a general methodology for subexponential parameterized algorithms outside the framework of bidimensionality

    Computing hypergraph width measures exactly

    Full text link
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2^n) and compute the fractional hypertree-width of H in time O(m*1.734601^n).Comment: 12 pages, 1 figur

    Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation

    Get PDF
    AbstractWe generalize the linear-time shortest-paths algorithm for planar graphs with nonnegative edge-weights of Henzinger et al. (1994) to work for any proper minor-closed class of graphs. We argue that their algorithm can not be adapted by standard methods to all proper minor-closed classes. By using recent deep results in graph minor theory, we show how to construct an appropriate recursive division in linear time for any graph excluding a fixed minor and how to transform the graph and its division afterwards, so that it has maximum degree three. Based on such a division, the original framework of Henzinger et al. can be applied. Afterwards, we show that using this algorithm, one can implement Mehlhorn’s (1988) 2-approximation algorithm for the Steiner tree problem in linear time on these graph classes

    Computing hypergraph width measures exactly

    Get PDF
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2n) and compute the fractional hypertree-width of H in time O(1.734601n.m).

    A Java Optimizer for the Fast Component Mounter (FCM 2)

    No full text
    corecore